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SUMMARY

In this paper, proper orthogonal decomposition (POD) is combined with the Petrov–Galerkin least squares
mixed finite element (PLSMFE) method to derive an optimizing reduced PLSMFE formulation for the
non-stationary conduction–convection problems. Error estimates between the optimizing reduced PLSMFE
solutions based on POD and classical PLSMFE solutions are presented. The optimizing reduced PLSMFE
formulation can circumvent the constraint of Babuška–Brezzi condition so that the combination of finite
element subspaces can be chosen freely and allow optimal-order error estimates to be obtained. Numerical
simulation examples have shown that the errors between the optimizing reduced PLSMFE solutions and
the classical PLSMFE solutions are consistent with theoretical results. Moreover, they have also shown
the feasibility and efficiency of the POD method. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Let �⊂R2 be a bounded and connected polygonal domain. Consider the non-stationary
conduction–convection problems whose coupled equations governing viscous incompressible flow
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and heat transfer for the incompressible fluid are Boussinesq approximations to the non-stationary
Navier–Stokes equations.
Problem (I ): Find u=(u1,u2), p and T such that for tN>0,

ut −��u+(u·∇)u+∇ p = jT, (x, y, t)∈�×(0, tN )

∇ ·u = 0, (x, y, t)∈�×(0, tN )

Tt −�−1
0 �T +u·∇T = 0, (x, y, t)∈�×(0, tN )

u(x, y, t)=0, T (x, y, t) = �(x, y, t), (x, y, t)∈��×(0, tN )

u(x, y,0)=0, T (x, y,0) = �(x, y), (x, y)∈�

(1)

where u=(u1,u2) represents the velocity vector, p the pressure, T the temperature, Re the
Reynolds number, Pr the Prandtl number, �=√

Pr/Re, �0=√
RePr , j=(0,1) the unit vector,

and �(x, y, t) and �(x, y) are the given functions, while tN is the final time. For the sake of
convenience and without loss of generality, we may suppose in the following theoretical analysis
that �(x, y, t)=0.

The non-stationary conduction–convection problems (I) constitute an important system of equa-
tions in atmospheric dynamics and a dissipative nonlinear system of equations. Since this system
of equations does not only contain the velocity vector field as well as the pressure field but also
contain the temperature field [1, 2], finding the numerical solution of Problem (I) is a difficult task.
There are at least 15 papers in a special IJNMF issue (vol. 40, issue 8) addressing this topic—
comparing and discussing various numerical approaches including the Petrov–Galerkin method. In
particular, we would mention document [2] of the above issue that summarizes the results from the
papers dedicated to understanding the fluid dynamics of thermally driven cavity. Although mixed
finite element (MFE) method is one of the important approaches for solving the non-stationary
conduction–convection problems, the fully discrete system of MFE solutions for the non-stationary
conduction–convection problems has many degrees of freedom and an important convergence
stability condition is that the Babuška–Brezzi (BB) inequality [3, 4] holds for the combination of
finite element subspaces. Thus, an important problem is how to circumvent the constraint of the
BB inequality and alleviate the computational load by saving time-consuming calculations in the
computational process in a way that guarantees a sufficiently accurate numerical solution.

To circumvent the constraint of the BB inequality in MFE methods for Stokes and Navier–
Stokes equations, stabilized finite element methods [5–8] have been developed, motivated by the
streamline diffusion methods [9, 10]. Tang and Tsang have proposed a least squares finite element
method for time-dependent incompressible flows with thermal convection [11]. Some Petrov–
Galerkin least squares methods for the stationary Navier–Stokes equations and the non-stationary
conduction–convection problems were developed [12, 13].

Proper orthogonal decomposition (POD) is a technique for adequate approximation of fluid
flow with a reduced number of degrees of freedom, i.e. with lower-dimensional models alleviating
the computational load and providing CPU and memory savings. POD has been successfully
used in different fields including signal analysis and pattern recognition [14, 15], fluid dynamics,
and coherent structures [16–21], as well as in optimal flow control problems [22–24]. More
recently, some reduced-order finite difference models and MFE formulations and error estimates
for the upper tropical Pacific ocean model based on POD were presented [25–28], along with
an optimizing finite difference scheme based on POD for non-stationary conduction–convection
problems [29]. Kunisch and Volkwein have presented some Galerkin POD methods for parabolic
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problems [30] and a general equation in fluid dynamics [31]. The singular value decomposition
approach combined with POD technique is used to treat the Burgers equation in [32] and the cavity
flow problem in [33]. Patera and Rønquist have also presented a reduced basic approximation and
a posteriori error estimation for a Boltzmann model [34]. And again, Rovas et al. have advanced
reduced basic output bound methods for parabolic problems [35].

To the best of our knowledge, there are no published methods addressing the case where POD
is used to reduce the Petrov–Galerkin least squares mixed finite element (PLSMFE) formulation
for non-stationary conduction–convection problems or providing error estimates between classical
PLSMFE and reduced PLSMFE solutions. In this paper, we combine PLSMFE methods with POD
to deal with the non-stationary conduction–convection problems. In this manner, we ensure not only
stabilization of solutions of the fully discrete PLSMFE system but also alleviate the computational
load and save time-consuming calculations in the computational process while guaranteeing a
sufficiently accurate numerical solution. We also derive error estimates between usual PLSMFE
solutions and the solutions of optimizing reduced PLSMFE formulation based the POD technique.
Then, we consider the results obtained from numerical simulations of cavity flows to show that the
errors between POD solutions of optimizing reduced PLSMFE formulation and the usual PLSMFE
solutions are consistent with theoretical results.

The present paper is organized as follows. In Section 2 we derive the usual PLSMFE methods
for the non-stationary conduction–convection problems and generate snapshots from transient
solutions computed from the equation system derived by usual PLSMFE methods. In Section 3,
the optimal orthogonal bases are reconstructed from elements of the snapshots with POD and an
optimizing reduced PLSMFE formulation is developed with a lower-dimensional number based
on POD for the nonlinear non-stationary conduction–convection problems. In Section 4, error
estimates between usual PLSMFE solutions and POD solutions of optimizing reduced PLSMFE
formulation are derived. In Section 5, some numerical examples are presented illustrating that the
errors between optimizing the PLSMFE approximate solutions and the usual PLSMFE solutions
are consistent with previously obtained theoretical results. Section 6 provides conclusions and
future tentative ideas.

2. USUAL PLSMFE APPROXIMATION FOR THE NON-STATIONARY CONDUCTION–
CONVECTION PROBLEMS AND SNAPSHOTS GENERATION

The Sobolev spaces used in this context are standard [36]. Let N be a positive integer; denote
the time step increment by k= tN/N . The notation tn =kn and (un, pn,T n) denotes the semi-
discrete approximation of (u(x, y, tn), p(x, y, tn),T (x, y, tn)). By introducing a finite difference
approximation for time derivation of Problem (I), we obtain the following semi-discrete formulation
at discrete times.
Problem (II): Find (un, pn)∈ X×M such that for n=1,2, . . . ,N ,

(un,v)+ka(un,v)+ka1(un,un,v)−kb(pn,v) = k( jT n,v)+(un−1,v) ∀v∈ X

b(q,un) = 0 ∀q∈M

(T n,�)+kD(T n,�)+ka2(un,T n,�) = (T n−1,�) ∀�∈W

u0 = 0, T 0=�(x, y), (x, y)∈�

(2)
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where

X =H1
0 (�)2, M=

{
q∈L2(�),

∫
�
q dx dy=0

}
, W =H1

0 (�)

a(u,v)=�
∫

�
∇u·∇vdx dy, b(q,v)=

∫
�
q divvdx dy

a1(u,v,w)= 1

2

∫
�

2∑
i=1

2∑
j=1

[
ui

�v j

�xi
w j −ui

�w j

�xi
v j

]
dx dy

a2(u,T,�)= 1

2

∫
�

2∑
i=1

[
ui

�T
�xi

�−ui
��

�xi
T

]
dx dy

D(T,�)=�−1
0

∫
�

∇T ·∇�dx dy

Remark 1
Problem (II) uses Euler backward one step to discretize the time derivative. However, the time
derivative may use other difference schemes, e.g. more exactly, central differences, forward differ-
ence, etc., but the basic approach is the same as in the present method.

Using the theory of stationary conduction–convection problems proves that Problem (II) has a
unique solution and has the following error estimate [1, 35].
Theorem 2.1
If second derivatives utt and Ttt of the solution (u, p,T ) of Problem (I) are all bounded, then

‖u(tn)−un‖0+(k�)1/2
n∑

i=1
|u(ti )−ui |1+‖T (tn)−T n‖0

+(k�−1
0 )1/2

n∑
i=1

|T (ti )−T i |1+k1/2
n∑

i=1
‖p(ti )− pi‖0�Ck

where (u(tn), p(tn),T (tn)) is the value at tn =kn of the solution (u(t), p(t),T (t)) of Problem (I), C
is a constant depending only on �(x, y), Reynolds number, Prandtl number and tN but independent
of k.

Throughout this paper, C indicates a positive constant that is possibly different at different
occurrences and is independent of the mesh parameters h and time step increment k, but may
depend on �, the Reynolds number, and on other parameters introduced in this paper.

In order to find the numerical solution for Problem (II), it is necessary to discretize Problem
(II). We introduce an MFE approximation for the spatial variable. Let {	h} be a uniformly regular
family of triangulation of �̄ [35, 36], indexed by a parameter h=maxK∈	h {hK ;hK =diam(K )},
i.e. there is a constant C , independent of h, such that h�ChK (∀K ∈	h). We introduce the finite
element subspaces Xh ⊂ X , Mh ⊂M , and Wh ⊂W as follows:

Xh = {vh ∈ X∩C0(�̄)2;vh |K ∈ P�(K )2 ∀K ∈	h}
Mh = {qh ∈M∩C0(�̄);qh |K ∈ P�(K ) ∀K ∈	h} (3)

Wh = {�h ∈W ∩C0(�̄);�h |K ∈ P�(K ) ∀K ∈	h}
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where P�(K ) is the space of piecewise polynomials of degree � on K , ��1, ��1, and ��1 are
three integers.

Let (unh, p
n
h ,T

n
h )∈ Xh×Mh×Wh be the PLSMFE approximation corresponding to (un, pn,T n).

Then, the fully discrete PLSMFE solution for Problem (II) may be expressed as follows.
Problem (III): Find (unh, p

n
h ,T

n
h )∈ Xh×Mh×Wh such that for 1�n�N ,

(unh,vh)+ka(unh,vh)+ka1(unh,u
n
h,vh)−kb(pnh ,vh)+kb(qh,unh)

+ ∑
K∈	h

	K (unh−k��unh+k(unh ·∇)uh+k∇ pnh ,vh−k��vh+k(unh ·∇)vh+k∇qh)K

= ∑
K∈	h

	K (k jT n
h +un−1

h ,vh−k��vh+k(unh ·∇)vh+k∇qh)K

+k( jT n
h ,vh)+(un−1

h ,vh) ∀(vh,qh)∈ Xh×Mh (4)

(T n
h ,�h)+kD(T n

h ,�h)+ka2(unh,T
n
h ,�h)=(T n−1

h ,�h) ∀�h ∈Wh

u0h =0, T 0
h =�(x, y), (x, y)∈�

where 	K =
hK , 
>0 is arbitrary constant.
Write v̂=(v, p) and ŵ=(w,q). Define

B	(u,unh; v̂, ŵ) = (v,w)+ka(v,w)+ka1(u,v,w)−kb(p,w)+kb(q,v)

+ ∑
K∈	h

	K (v−k��v+k(u·∇)v+k∇ p,w−k��w+k(unh ·∇)w+k∇q)K

FT	(ŵ) = k( jT n
h ,w)+(un−1

h ,w) (5)

+ ∑
K∈	h

	K (un−1
h +k jT n

h ,w−k��w+k(unh ·∇)w+k∇q)K

D̃(v;T,�) = (T,�)+kD(T,�)+ka2(v,T,�)

Then Problem (III) could be rewritten as follows.
Problem (IV): Find ûnh ≡(unh, p

n
h)∈ Xh×Mh such that, for 1�n�N ,

B	(u
n
h,u

n
h; ûnh, ŵh) = FT	(ŵh) ∀ŵh ≡(vh,qh)∈ Xh×Mh

D̃(unh;T n
h ,�h) = (T n−1

h ,�h) ∀�h ∈Wh (6)

u0h = 0, T 0
h =�(x, y) in �

where 	|K =	k .
The following properties for trilinear forms a1(·, ·, ·) and a2(·, ·, ·) are often used (see [37]):

a1(u,v,w) = −a1(u,w,v), a1(u,v,v)=0 ∀u,v,w∈ X

a2(u,T,�) = −a2(u,�,T ), a2(u,�,�)=0 ∀u∈ X, ∀T,�∈W
(7)
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where C1 is a constant independent of u,v, and w, and C2 is a constant independent of u,T ,
and �. The bilinear forms a(·, ·), D(·, ·), and b(·, ·) have the following properties:

a(v,v)��|v|21 ∀v∈ X, |a(u,v)|��|u|1|v|1 ∀u,v∈ X (8)

D(�,�)��−1
0 |�|21 ∀�∈W, |D(T,�)|��−1

0 |T |1|�|1 ∀T,�∈W (9)

sup
v∈X

b(q,v)
|v|1 ��‖q‖0 ∀q∈M (10)

where � is a constant. Define

N0= sup
u,v,w∈X

a1(u,v,w)

|u|1 ·|v|1 ·|w|1 , Ñ0= sup
u∈X,(T,�)∈W×W

a2(u,T,�)

|u|1 ·|T |1 ·|�|1 (11)

The following discrete Gronwall lemma is well known and very useful in the context of next
analysis (see [4, 34]).
Lemma 2.2
If {an}, {bn}, and {cn} are three non-negative sequences and {cn} is monotone, then they satisfy

an+bn�cn+ �̄
n−1∑
i=0

ai , �̄>0, a0+b0�c0

then

an+bn�cn exp(n�̄), n�0

For Problem (III) or (IV), we have the following result [13].
Theorem 2.3
If h and k are sufficiently small and h=O(k), then there exists h0>0 such that when h<h0
Problem (III) has a unique solution sequence (unh, p

n
h ,T

n
h )∈ Xh×Mh×Wh and for 1�n�N ,

‖unh‖20+k
n∑

i=1
‖uih‖21+

n∑
i=1

‖	1/2(uih−k��uih+k(vih ·∇)uih+k∇ pih)‖20,h�RM (12)

‖un−unh‖0+(k�)1/2
n∑

i=1
|ui −uih |1+k1/2

n∑
i=1

‖pi − pih‖0+‖T n−T n
h ‖0

+(k�−1
0 )1/2

n∑
i=1

|T i −T i
h |1�C(h�+h�+h�) (13)

where M= tN (R+2kh
)‖�(x, y)‖20 exp(2
htN ), R=�−1, ‖·‖20,h =∑K∈	h
‖·‖20,K , (ûn,T n)=

(un, pn,T n)∈[W 1,∞
0 (�)∩H �+1(�)]2×H�+1(�)×[W 1,∞

0 (�)∩H �+1(�)] are the solutions for
Problem (II), and C is the constant dependent on |un|�+1, |pn|�, and |T n|�+1.

Combining Theorems 2.1 and 2.3 yields the following result.
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Theorem 2.4
Under the assumptions of Theorems 2.1 and 2.3, there are the following error estimates, for
1�n�N :

‖u(tn)−unh‖0+(k�)1/2
n∑

i=1
|u(ti )−uih |1+k1/2

n∑
i=1

‖p(ti )− pih‖0

+‖T (tn)−T n
h ‖0+(k�−1

0 )1/2
n∑

i=1
|T (ti )−T i

h |1�C(k+h�+h�+h�)

If Re, Pr , triangulation parameter h, finite elements Xh , Mh , andWh , and the time step increment
k are all given, by solving Problem (III), we can obtain a solution ensemble {un1h,un2h, pnh ,T n

h }Nn=1.
And then we choose L (for example, L=20, N =200, in general, LN ) instantaneous solu-
tions Ui (x, y)=(uni1h,u

ni
2h, p

ni
h ,T ni

h )(1�n1<n2< · · ·<nL�N ) (which are empirically elected and
are useful and of interest for us to solve actual problem) from the N groups of solutions
(un1h,u

n
2h, p

n
h ,T

n
h ) (1�n�N ) for Problem (III), which are referred to as snapshots.

3. OPTIMIZING REDUCED PLSMFE FORMULATION-BASED POD TECHNIQUE FOR
THE NON-STATIONARY CONDUCTION–CONVECTION PROBLEMS

In this section, we use the POD technique to deal with the snapshots in Section 2 and to develop an
optimizing reduced PLSMFE formulation for the non-stationary conduction–convection problems.

Let X̂ = X×M×W . For Ui (x, y)=(uni1h,u
ni
2h, p

ni
h ,T ni

h ) (i=1,2, . . . , L) in Section 2, we set

V=span{U1,U2, . . . ,UL} (14)

and refer to V as the ensemble consisting of the snapshots {Ui }Li=1 at least one of which is
supposed to be non-zero. Let {w j }lj=1 (where w j =(wu j ,�pj ,�T j )) denote an orthogonal basis
of V with l=dimV. Then each member of the ensemble can be expressed as

Ui =
l∑

j=1
(Ui ,w j )X̂w j for i=1,2, . . . , L (15)

where (Ui ,w j )X̂ =(∇unih ,∇wu j )+(pnih ,�pj )+(∇T ni
h ,∇�T j ), (·, ·) is L2-inner product, and wu j ,

�pj , and �T j are orthogonal bases corresponding to u, p, and T , respectively.
The POD method consists in finding an orthogonal basis such that for every d (1�d�l) the

mean square error between the elements Ui (1�i�L) and corresponding dth partial sum of (15)
is minimized on average:

min
{� j }dj=1

1

L

L∑
i=1

∥∥∥∥∥Ui −
d∑
j=1

(Ui ,w j )X̂w j

∥∥∥∥∥
2

X̂

(16)

such that

(wi ,w j )X̂ =	i j for 1�i�d, 1� j�i (17)
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where ‖Ui‖X̂ =[‖∇uni1h‖20+‖∇uni2h‖20+‖pnih ‖20+‖∇T ni
h ‖20]1/2. A solution {w j }dj=1 of (16) and (17)

is known as a POD basis of rank d . Note that ‖u‖1 is equivalent to ‖∇u‖0 for u∈H1
0 (�), which

show that inner product and norm including only the gradient of the function are reasonable.
We introduce the correlation matrix G=(Gi j )L×L ∈ RL×L corresponding to the snapshots

{Ui }Li=1 by

Gi j = 1

L
(Ui ,U j )X̂ (18)

The matrix G is positive semi-definite and has rank l. The solution of (16) and (17) can be found
in [16, 19, 31], for example.

Proposition 3.1
Let �1��2� · · ·��l>0 denote the positive eigenvalues of G and v1,v2, . . . ,vl the associated eigen-
vectors. Then a POD basis of rank d�l is given as

wi =
1√
�i
vTi (U1,U2, . . . ,UL)T= 1√

�i

L∑
j=1

(vi ) jU j (19)

where (vi ) j denotes the j th component of the eigenvector vi . Furthermore, the following error
formula holds:

1

L

L∑
i=1

∥∥∥∥∥Ui −
d∑
j=1

(Ui ,w j )X̂w j

∥∥∥∥∥
2

X̂

=
l∑

j=d+1
� j (20)

Let Vd =span{w1,w2, . . . ,wd} and Xd ×Md ×Wd =Vd with Xd ⊂ X , Md ⊂M , and Wd ⊂W .
Let the Ritz-projection Pd : X → Xd , L2-projection d :M→Md , and the Ritz-projection �d :W →
Wd be denoted by, respectively,

a(Pdu,vd) = a(u,vd) ∀vd ∈ Xd

(d p,qd) = (p,qd) ∀qd ∈Md

D(�dw,wd) = D(w,wd) ∀wd ∈Wd

(21)

where u∈ X , p∈M , and w∈W . Owing to (21) the linear operators Pd , d , and �d are well defined
and bounded:

‖∇(Pdu)‖0 � ‖∇u‖0 ∀u∈ X

‖d p‖0 � ‖p‖0 ∀p∈M

‖∇(�dw)‖0 � ‖∇w‖0 ∀w∈W

(22)
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Lemma 3.2
For every d (1�d�l) the projection operators Pd , d , and �d satisfy, respectively,

1

L

L∑
i=1

‖∇(unih −Pdunih )‖20 �
l∑

j=d+1
� j

1

L

L∑
i=1

‖pnih −d pnih ‖20 �
l∑

j=d+1
� j

1

L

L∑
i=1

‖∇(T ni
h −PdT ni

h )‖20 �
l∑

j=d+1
� j

(23)

Proof
For any unih ∈ Xh (i=1,2, . . . , L) we deduce from (21) that

�‖∇(unih −Pdunih )‖20 = a(unih −Pdunih ,unih −Pdunih )=a(unih −Pdunih ,unih −vd)

� �‖∇(unih −Pdunih )‖0‖∇(unih −vd)‖0 ∀vd ∈ Xd

Furthermore,

‖∇(unih −Pdunih )‖0�‖∇(unih −vd)‖0 ∀vd ∈ Xd (24)

Taking vd =∑d
j=1(∇unih ,∇wu j )wu j (where wu j is the component of w j corresponding to u) in

(24), we can obtain the first inequality of (23) from (20).
Using the Hölder inequality and the second equality of (21) yields

‖pnih −d pnih ‖20 = (pnih −d pnih , pnih −d pnih )=(pnih −d pnih , pnih −qd)

� ‖pnih −d pnih ‖0‖pnih −qd‖0 ∀qd ∈Md

Consequently,

‖pnih −d pnih ‖0�‖pnih −qd‖0 ∀qd ∈Md (25)

Taking qd =∑d
j=1(p

ni
h ,�pj )0�pj (where �pj is the component of w j corresponding to p) in (25),

from (20) we can obtain the second inequality of (23).
Using the same technique as the first inequality of (23) can prove the third inequality of (23),

which completes the proof of Lemma 3.2. �

Thus, using Vd = Xd ×Md ×Wd , we can obtain the optimizing reduced PLSMFE formulation
for Problem (IV) as follows.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:409–436
DOI: 10.1002/fld



418 Z. LUO ET AL.

Problem (V): Find (ûnd ,T
n
d )≡(und , p

n
d ,T

n
d )∈Vd such that

B	(u
n
d ,u

n
d; ûnd , ŵd) = FT	(ŵd) ∀ŵn

d ≡(vd ,qd)∈ Xd ×Md

D̃(und;T n
d ,�d) = (T n−1

d ,�d) ∀�d ∈Wd

u0d = 0, T 0
d =�(x, y), (x, y)∈�

(26)

where 1�n�N .

Remark 2
Problem (V) is an optimizing reduced PLSMFE formulation based on POD technique for Problem
(IV), since it only includes 4d degrees of freedom, whereas Problem (IV) includes 4Np if �=
�= �=1 (where Np is the number of the vertices in 	h) and also includes 4Np+4Ns ≈16Np if
�=�= �=2 and 4d4Np 16Np (where Ns is the number of the sides in 	h). And since the

residual 	1/2K (uid −k��und +k(vnd ·∇)und +k∇ pnd −k jT n
d −un−1

d )K in Problem (V) is introduced, the
combination of finite element subsets need not satisfy the BB stability condition and optimizing-
order error estimates can be obtained (see Section 4). When one computes real-life problems, one
may obtain the ensemble of snapshots from physical system trajectories by drawing samples from
experiments and interpolation (or data assimilation). For example, for weather forecast, one can
use previous weather prediction results to construct the ensemble of snapshots, then restructure
the POD basis for the ensemble of snapshots by above (16)–(19), and finally combine it with a
Petrov–Galerkin least squares projection to derive an optimizing reduced-order dynamical system,
i.e. one needs only to solve Problem (V) with few degrees of freedom, without having to solve
Problem (IV). Thus, a forecast of future weather change can be simulated in a fast manner, which
is of major importance for actual real-life applications.

4. EXISTENCE AND ERROR ANALYSIS OF SOLUTIONS OF THE OPTIMIZING
REDUCED PLSMFE FORMULATION

This section is devoted to discussing the existence and error estimates of solutions for Problem (V).
We see from (19) that Vd = Xd ×Md ×Wd ⊂V⊂ Xh×Mh×Wh ⊂ X×M×W .
We first obtain the following existence result for solutions of Problem (V), whose proof is

provided in Appendix A.

Theorem 4.1
Under the assumptions of Theorems 2.1 and 2.3, Problem (V) has a unique solution sequence
(und , p

n
d ,T

n
d )∈ Xd ×Md ×Wd and satisfies, for 1�n�N ,

[
‖und‖20+k

n∑
i=1

‖uid‖21+‖	1/2(und −k��und +kund∇und +k∇ pnd )‖20,h
]1/2

�
√
RM (27)

In the following theorem, the error estimates between the solutions (und , p
n
d ,T

n
d ) for Problem

(V) and the solutions (unh, p
n
h ,T

n
h ) for Problem (IV) are derived, whose proof is provided in

Appendix B.
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Theorem 4.2
Under the assumptions of Theorems 2.1 and 2.3, let n0=0 and N<nL+1, if h and k are sufficiently
small, h=O(k), and k=O(L−2), then the errors between the solutions (und , p

n
d ,T

n
d ) for Problem

(V) and the solutions (unh, p
n
h ,T

n
h ) for Problem (IV) have the following error estimates, for 1�n�N ,

if n=ni ∈{n1,n2, . . . ,nL},

‖unih −unid ‖0+‖T ni
h −T ni

d ‖0+(k�)1/2
ni∑

j=n1

‖∇(u j
h−u j

d)‖0+k1/2
ni∑

j=n1

‖p j
h − p j

d‖0

+(k�−1
0 )1/2

ni∑
j=n1

‖∇(T j
h −T j

d )‖0�C

(
k1/2

l∑
j=d+1

� j

)1/2

(28)

and if snapshots are taken at uniform intervals, ni<n<ni+1 (i=0,1,2, . . . , L),

‖unh−und‖0+‖T n
h −T n

d ‖0+(k�)1/2
[
‖∇(unh−und)‖0+

ni∑
j=1

‖∇(u j
h−u j

d)‖0
]

+(k�−1
0 )1/2

[
‖∇(T n

h −T n
d )‖0+

ni∑
j=1

‖∇(T j
h −T j

d )‖0
]

+k1/2
[
‖pnh − pnd‖0+

ni∑
j=1

‖p j
h − p j

d‖0
]

�Ck+C

(
k1/2

l∑
j=d+1

� j

)1/2

(29)

Combining Theorems 2.4 and 4.2 yields the following result.

Theorem 4.3
Under Theorems 2.4 and 4.2 hypotheses, the error estimates between the solutions (u(t), p(t),T (t))
for Problem (I) and the solutions (und , p

n
d ,T

n
d ) for the reduced-order basic Problem (V) are, for

n=1,2, . . . ,N , if n=ni ∈{n1,n2, . . . ,nL},

‖u(tni )−unid ‖0+‖T (tni )−T ni
d ‖0+(k�)1/2

ni∑
j=n1

‖∇(u j −u j
d)‖0+k1/2

ni∑
j=n1

‖p j − p j
d‖0

+(k�−1
0 )1/2

ni∑
j=n1

‖∇(T j −T j
d )‖0�C(h�+h�+h�+k)+C

(
k1/2

l∑
j=d+1

� j

)1/2

and if snapshots are taken at uniform intervals, ni<n<ni+1 (i=0,1,2, . . . , L),

‖u(tn)−und‖0+‖T (tn)−T n
d ‖0+(k�)1/2

[
‖∇(u(tn)−und)‖0+

ni∑
j=n1

‖∇(u(t j )−u j
d)‖0

]

+(k�−1
0 )1/2

[
‖∇(T (tn)−T n

d )‖0+
ni∑

j=n1

‖∇(T (t j )−T j
d )‖0

]

+k1/2
[
‖p(tn)− pnd‖0+

ni∑
j=n1

‖p(t j )− p j
d‖0

]
�C(h�+h�+h�+k)+C

(
k1/2

l∑
j=d+1

� j

)1/2
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Remark 3
The condition k=O(L−2) in Theorems 4.2 and 4.3 implies N =O(L2), which shows the rela-
tion between the number L of snapshots and the number N of all time instances. Therefore,
it is unnecessary to take the total number of transient solutions at all time instances tn as
snapshots, for instance in [30, 31]; instead it is sufficient to take one snapshot every 10 time
intervals. Theorems 4.2 and 4.3 have presented the error estimates between the solutions of
the optimizing reduced PLSMFE formulation Problem (V) and the solutions of usual PLSMFE
formulation Problems (III) and (I), respectively. Since our methods employ some usual PLSMFE
solutions (unih , pnih ,T ni

h ) (i=1,2, . . . , L) for Problem (III) as assistant analysis (see Appendix
B), the error estimates in Theorem 4.3 are correlated to the spatial grid scale h and the time
step size k. However, when one computes real-life problems, one may obtain the ensemble
of snapshots from the physical system trajectories by drawing samples from experiments and
interpolation (or data assimilation). Thus, the PLSMFE solutions (unih , pnih ,T ni

h ) (i=1,2, . . . , L)

could be replaced by the interpolation functions of experimental and previous results, avoiding
solving full-order basic Problem (III) and requiring only to solve directly Problem (V), which
includes very few degrees of freedom since it depends only on d (d l�LN ), in general.
Since the development and change of numerous future nature phenomena are closely related to
previous results (for example, weather change, biology anagenesis, and so on), using existing
results as snapshots to structure POD basic, by solving corresponding PDEs one will well and
truly capture future law of the development and change of natural phenomena. Therefore, these
POD methods are of valuable for important applications. If Vd ⊂H2(�)2, Problem (V) will not
appear

∑
K∈	h

, i.e. Problem (V) will be independent of K , i.e. it is independent of the spatial grid
scale h.

5. SOME NUMERICAL EXPERIMENTS

In this section, we present some numerical examples with a physical model of cavity flow for
second-order element (i.e. �=�= �=2) and with different Reynolds numbers by the optimizing
the reduced PLSMFE formulation Problem (V) validating our theoretical results.

Let the side length of the cavity be 1 (see Figure 1). We first divide the cavity into 32×32=1024
small squares with side length �x=�y= 1

32 , and then link diagonal of square to divide each square

into two triangles in the same direction, which consists of triangularization 	h (h=√
2/32). We

take a time step increment as �t=0.001. Let the initial value and boundary values of u and v be
equal to 0 on boundary of the cavity are also taken as 0. And let T =0 on left and lower boundary
of the cavity, �T /�y=0 on upper boundary of the cavity, and T =4y(1− y) on right boundary of
the cavity (see Figure 1). Put Pr =0.71 and Re=2000 or 5000.

We obtain 20 values (i.e. snapshots) outputting at time t=10,20,30, . . . ,200 by solving classical
PLSMFE formulation, i.e. Problem (IV). It is numerically shown that the eigenvalues satisfy
[k1/2∑20

i=6 �i ]1/2�2×10−3. When t=200, we obtain the solutions of the reduced formulation
Problem (IV) based on the POD method of MEF depicted graphically in Figures 2–7 on right-hand
side using five optimal POD bases if Re=2000 and 5000, whereas the solutions obtained with
classical PLSMFE formulation Problem (III) are depicted graphically in Figures 2–7 on left-hand
side. (Since these figures are equal to solutions obtained with 20 bases, they are also known as
the figures of solution using full bases.)
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Figure 1. Physics model of the cavity flows: t=0, i.e. n=0 initial values on boundary.

Figure 2. For Re=2000, temperature figure for classical PLSMFE solution (figure on left-hand side) and
when d=5 the optimizing reduced PLSMFE solution (figure on right-hand side).

Figure 8 shows the errors between solutions obtained with different numbers of optimal POD
bases and solutions obtained with the full bases. Comparing classical PLSMFE formulation
Problem (III) with the reduced PLSMFE formulation Problem (V) containing only five optimal
bases implementing 3000 times numerical simulation computations, we find that for the classical
implementation for PLSMFE formulation Problem (III) the performing time required is 12min,
whereas for the optimizing reduced PLSMFE formulation Problem (V) with five optimal bases the
required performing time is only 3 s, i.e. the classical PLSMFE formulation Problem (III) required
performing time that is by a factor of 240 larger than the optimizing reduced PLSMFE formulation
Problem (V) with five optimal bases required performing time, whereas the errors between their
respective solutions do not exceed 3×10−3. Although our examples are in sense recomputing what
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Figure 3. For Re=5000, temperature figure for classical PLSMFE solution (figure on left-hand side) and
when d=5 the optimizing reduced PLSMFE solution (figure on right-hand side).

Figure 4. For Re=2000, pressure figure for classical PLSMFE solution (figure on left-hand side) and
when d=5 the optimizing reduced PLSMFE solution (figure on right-hand side).

we have already computed by usual PLSMFE formulation Problem (III), when we compute actual
problems, we may structure the snapshots and POD basis with interpolation or data assimilation
by drawing samples from experiments, then solve directly Problem (V), while it is unnecessary to
solve Problem (III); thus, the time-consuming calculations and resource demands in the computa-
tional process will be greatly reduced. It is also shown that finding the approximate solutions for
the non-stationary conduction–convection problems with the optimizing reduced PLSMFE formu-
lation Problem (V) is very effective. In addition, the results obtained for the numerical examples
are consistent with the theoretical ones.

6. CONCLUSIONS

In this paper, we have employed the POD techniques to derive an optimizing reduced PLSMFE
formulation for the non-stationary conduction–convection problems (see Remark 2). We first
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Figure 5. For Re=5000, pressure stream line figure for classical PLSMFE solutions (figure on left-hand
side) and when d=5, the optimizing reduced PLSMFE solution (figure on right-hand side).

Figure 6. For Re=2000, velocity stream line figure for classical PLSMFE solutions (figure on left-hand
side) and when d=5 the optimizing reduced PLSMFE solution (figure on right-hand side).

reconstruct optimal orthogonal bases of ensembles of data compiled from transient solutions derived
by using the usual PLSMFE equation system, whereas in actual applications, one may obtain the
ensemble of snapshots from physical system trajectories by drawing samples from experiments
and interpolation (or data assimilation). We have also combined the optimal orthogonal bases
with a Petrov–Galerkin least squares projection procedure, thus yielding a new optimizing reduced
PLSMFE formulation of lower-dimensional order and of sufficient accuracy for the non-stationary
conduction–convection problems. We have then proceeded to derive error estimates between our
optimizing reduced PLSMFE approximate solutions and the usual PLSMFE approximate solutions
and have shown using numerical examples that the errors between the optimizing reduced PLSMFE
approximate solutions and the usual PLSMFE solutions are consistent with the theoretical error
results. Since this paper is already too long, the analysis of conditioning of our POD-reduced
PLSMFE formulation compared with the usual PLSMFE formulation and the problems in 3D
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Figure 7. For Re=5000, velocity stream line figure for classical PLSMFE solutions (figure on left-hand
side) and when d=5 the optimizing of the reduced PLSMFE solution (figure on right-hand side).

Figure 8. Error for Re=2000 on left–hand side and error for Re=5000 on right-hand side.

simulations are not included and will be further investigated in a new paper in advanced stages of
completion. These issues are of high current research interest. Future research work in this area aims
at addressing more complicated PDEs, extending the optimizing reduced PLSMFE formulation,
applying it to a realistic atmospheric operational forecast system and to a set of more complicated
nonlinear PDEs, for instance, 3D realistic model equations coupling strongly nonlinear proper-
ties, non-homogeneous variable flux and boundary, etc. Using theoretical analysis and numerical
examples, we have shown that the optimizing reduced PLSMFE formulation presented herein has
extensive potential applications.

APPENDIX A

The proof of Theorem 4.1 is as follows.
We use Brouwer’s fixed point theorem to prove Theorem 4.1.
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For all vnd ∈ Xd and ‖vnd‖20+k
∑n

i=1 ‖vid‖21�RM , consider the following linearized problem:

B	(v
n
d ,v

n
d; ûnd , ŵd) = F	(ŵd) ∀ŵd ∈ Xd ×Md

u0d = 0 in �
(A1)

D̃(vnd;T n
d ,�d) = (T n−1

d ,�d) ∀�d ∈Wd

T 0
d = �(x, y) in �

(A2)

Since D̃(vnd; ·, ·) is a coercive bilinear functional, linearized problem (A2) has a unique group
of solutions T n

d ∈Wd (n=1,2, . . . ,N ). For known T n
d , since B	(vnd ,v

n
d; ·, ·) is a coercive bilinear

functional, linearized problem (A1) has a unique group of solutions ûnd =(und , p
n
d ) (n=1,2, . . . ,N ).

Thus, there exists a map G :(v̂nd ,�nd)→(ûnd ,T
n
d ) (n=1,2, . . . ,N ), where v̂nd =(vnd ,�

n
d).

Taking �d =T n
d in (A2), from (7) we obtain

‖T n
d ‖20+2�−1

0 k‖∇T n
d ‖20�‖T n−1

d ‖20 (A3)

Summing (A3) from 1 to n yields

‖T n
d ‖20+�−1

0 k
n∑

i=1
‖∇T i

d‖20�‖�(x, y)‖20 (A4)

Taking ŵd = ûnd in (A1), we obtain

‖und‖20+k�|und |21+‖	1/2(und −k��und +k(vnd ·∇)und +k∇ pnd )‖20,h
= ∑

K∈	h

	K (k jT n
d +un−1

d ,und −k��und +k(vnd ·∇)und +k∇ pnd )K

+k j (T n
d ,und)+(un−1

d ,und)

�1

2
(kR‖T n

d ‖2−1+k�|und |21)+
1

2
(‖und‖20+‖un−1

d ‖20)

+1

2
‖	1/2(kT n

d +un−1
d )‖20+ 1

2
‖	1/2(und −k��und +k(vnd ·∇)und +k∇ pnd )‖20,h (A5)

Noting that ‖·‖−1�‖·‖0. From (A5), we have

‖und‖20+k�|und |21+‖	1/2(und −k��und +k(vnd ·∇)und +k∇ pnd )‖20,h
�kR‖T n

d ‖20+‖un−1
d ‖20+2‖	1/2kT n

d ‖20+2
h‖un−1
d ‖20

�k(R+2kh
)‖�(x, y)‖20+‖un−1
d ‖20+2
h‖un−1

d ‖20 (A6)

Summing (A6) from 1 to n and noting that u0d =0 could yield

‖und‖20+k�
n∑

i=1
|uid |21+

n∑
i=1

‖	1/2(uid −k��uid +k(vid ·∇)uid +k∇ pid)‖20,h

�nk(R+2kh
)‖�(x, y)‖20+2
h
n−1∑
i=0

‖uid‖20 (A7)
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By discrete Gronwall inequality, we obtain

‖und‖20+k�
n∑

i=1
|uid |21+

n∑
i=1

‖	1/2(uid −k��uid +k(vid ·∇)uid +k∇ pid)‖20,h

�nk(R+2kh
)‖�(x, y)‖20 exp(2
hn) (A8)

Note that 1<�−1 and kn�tN . From (A8) we obtain

‖und‖20+k
n∑

i=1
|uid |21+

n∑
i=1

‖	1/2(uid −k��uid +k(vid ·∇)uid +k∇ pid)‖20,h

�RtN (R+2kh
)‖�(x, y)‖20 exp(2
tN )≡ RM (A9)

Let BRM ={(vnd ,�n
d ,�

n
d)∈ Xd ×Md ×Wd;‖vnd‖20+k

∑n
i=1 |vid |21�RM}. It is shown by (A4) and

(A9) that the map G : BRM → BRM . Thus, it is necessary to prove that F is continuous. For any
(v̂1nd ,�1nd )=(v1nd ,�1n

d ,�1nd ) and (v̂2nd ,�2nd )=(v2nd ,�2n
d ,�2nd )∈ BRM , by (A1) and (A2), we obtain

two groups of solutions (u1nd , p1nd ,T 1n
d ) and (u2nd , p2nd ,T 2n

d ) (n=1,2, . . . ,N ) such that

B	(v
1n
d ,v1nd ; û1nd , ŵd) = F	(ŵd) ∀ŵd ∈ Xd ×Md

D̃(v1nd ;T 1n
d ,�d) = (T 1(n−1)

d ,�d) ∀�d ∈Wd

u10d = 0, T 10
d =�(x, y), (x, y)∈�

‖u1n‖20+k
n∑

i=1
‖u1id ‖21 � RM

(A10)

and

B	(v
2n
d ,v2nd ; û2nd , ŵd) = F	(ŵd) ∀ŵd ∈ Xd ×Md

D(v2nd ;T 2n
d ,�d) = (T 2(n−1)

d ,�d) ∀�d ∈Wd

u20d = 0, T 20
d =�(x, y), (x, y)∈�

‖u2n‖20+k
n∑

i=1
‖u2id ‖21 � RM

(A11)

By (A10), (A11), (7), (11), (A4), and inverse inequality, we obtain that

‖T 1n
d −T 2n

d ‖20+k�−1
0 |T 1n

d −T 2n
d |21

=(T 1(n−1)
d −T 2(n−1)

d ,T 1n
d −T 2n

d )−ka2(v1nd −v2nd ,T 1n
d ,T 1n

d −T 2n
d )

�‖T 1n
d −T 2n

d ‖0‖T 1(n−1)
d −T 2(n−1)

d ‖0+Ck|v1nd −v2nd |1|T 1n
d −T 2n

d |1‖T 1n
d ‖0

� 1
2‖T 1n

d −T 2n
d ‖20+ 1

2‖T 1(n−1)
d −T 2(n−1)

d ‖20
+Ck|v1nd −v2nd |21+ 1

2k�
−1
0 |T 1n

d −T 2n
d |21 (A12)
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Therefore, we obtain

‖T 1n
d −T 2n

d ‖20+k�−1
0 |T 1n

d −T 2n
d |21�‖T 1(n−1)

d −T 2(n−1)
d ‖20+Ck|v1nd −v2nd |21 (A13)

Summing (A13) from 1 to n can yield

‖T 1n
d −T 2n

d ‖20+k�−1
0

n∑
i=1

|T 1i
d −T 2i

d |21�Ck
n∑

i=1
|v1id −v2id |21 (A14)

By (A10) and (A11), we obtain, ∀ŵd =(wd ,rd)∈ Xd ×Md ,

B	(v
1n
d ,v1nd , û1nd , ŵd)−B	(v

2n
d ,v2nd , û2nd , ŵd)

=(u1(n−1)
d −u2(n−1)

d ,wd)+ ∑
K∈	h

	K (u2(n−1)
d ,k(v1nd −v2nd ) ·∇wd)K

+ ∑
K∈	h

	K (u1(n−1)
d −u2(n−1)

d ,wd −k��wd +kv1nd ·∇wd +k∇rd)K

+ ∑
K∈	h

	K (k j (T 1n
d −T 2n

d ),wd −k��wd +kv1nd ·∇wd +k∇rd)K

+k( j (T 1n
d −T 2n

d ),wd)+ ∑
K∈	d

	K (k jT 2n
d ,k(v1nd −v2nd )∇wd)≡ S0 (A15)

Taking wd =u1nd −u2nd and rd = p1nd − p2nd , on the one hand, we obtain

B	(v
1n
d ,v1nd , ŵd , ŵd) = ‖wd‖20+k�|wd |21

+‖	1/2(wd −k��wd +kv1nd ·∇wd +k∇rd)‖20,h (A16)

On the other hand, by (A10) and (A11) we obtain

B	(v
1n
d ,v1nd , ŵd , ŵd) = B	(v

1n
d ,v1nd , û1nd , ŵd)−B	(v

1n
d ,v1nd , û2nd , ŵd)

= B	(v
2n
d ,v2nd , û2nd , ŵd)−B	(v

1n
d ,v1nd , û2nd , ŵd)+S0

= ka1(v2nd −v1nd ,u2nd ,wd)

+ ∑
K∈	h

	K (k(v2nd −v1nd )∇u2nd ,wd −k��wd +kv1nd ·∇wd +k∇rd)K

+ ∑
K∈	h

	K (u2nd −k��u2nd +kv2nd ·∇u2nd +k∇ p2nd ,k(v2nd −v1nd )∇wd)K +S0

≡ S1+S2+S3+S0 (A17)

By (11) and (A11), we obtain

|S1|=|ka1(v2nd −v1nd ,u2nd ,wd)|�kRMN0|v2nd −v1nd |1|wd |1 (A18)
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By inverse inequality (see [36, 37]), (11), (A11), and (A12), we obtain

|S2| =
∣∣∣∣∣ ∑K∈	h

	K (k(v2nd −v1nd )∇u2nd ,wd −k��wd +kv1nd ·∇wd +k∇rd)K

∣∣∣∣∣
�Ckh1/2‖v2nd −v1nd ‖1‖	1/2(wd −k��wd +kv1nd ·∇wd +k∇rd)‖0,h (A19)

|S3| =
∣∣∣∣∣ ∑K∈	h

	K (u2nd −k��u2nd +kv2nd ·∇u2nd +k∇ p2nd ,k(v2nd −v1nd )∇wd)K

∣∣∣∣∣
�Ckh1/2|v2nd −v1nd |1|wd |1 (A20)

|S0| =
∣∣∣∣∣(u1(n−1)

d −u2(n−1)
d ,wd)+ ∑

K∈	h

	K (u2(n−1)
d ,k(v1nd −v2nd ) ·∇wd)K

+ ∑
K∈	h

	K (u1(n−1)
d −u2(n−1)

d ,wd −k��wd +kv1nd ·∇wd +k∇rd)K

+ ∑
K∈	h

	K (k j (T 1n
d −T 2n

d ),wd −k��wd +kv1nd ·∇wd +k∇rd)K

+k( j (T 1n
d −T 2n

d ),wd)+ ∑
K∈	h

	K ( jT 2n
d ,k(v1nd −v2nd )∇wd)

∣∣∣∣∣
� ‖u1(n−1)

d −u2(n−1)
d ‖0‖wd‖0+Ckh|v1nd −v2nd |1|wd |1

+Ch1/2‖u1(n−1)
d −u2(n−1)

d ‖0‖	1/2(wd −k��wd +kv1nd ·∇wd +k∇rd)‖0,h
+Ckh1/2‖T 1n

d −T 2n
d ‖0‖	1/2(wd −k��wd +kv1nd ·∇wd +k∇rd)‖0,h

+kh‖T 1n
d −T 2n

d ‖0‖wd‖1+Chk|v1nd −v2nd |1|wd |1 (A21)

If h=O(k), combining (A18)–(A21) and (A14) and using the Cauchy inequality could yield

|S0|+|S1|+|S2|+|S3| � 1

2
‖u1(n−1)

d −u2(n−1)
d ‖20+ 1

2
‖wd‖0

+Ck2|v1nd −v2nd |21+ k�

2
|wd |21+Ck‖u1(n−1)

d −u2(n−1)
d ‖20

+1

2
‖	1/2(wd −k��wd +kv1nd ·∇wd +k∇rd)‖20,h

+Ck3
n∑

i=1
|v1id −v2id |21 (A22)
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Combining (A22) and (A16), (A17) yields

‖	1/2(u1nd −u2nd )−k��(u1nd −u2nd )+kv1nd ·∇(u1nd −u2nd )

+k∇(p1nd − p2nd )‖20,h+‖u2nd −u1nd ‖20+k�|u2nd −u1nd |21

�‖u1(n−1)
d −u2(n−1)

d ‖20+Ck‖u1(n−1)
d −u2(n−1)

d ‖20+Ck3
n∑

i=1
|v1id −v2id |21 (A23)

Summing (A23) from 1 to n we obtain

n∑
i=1

‖	1/2(u1id −u2id )−k��(u1id −u2id )+kv1id ·∇(u1id −u2id )

+k∇(p1id − p2id )‖20,h+‖u1nd −u2nd ‖20+k�
n∑

i=1
|u1id −u2id |21

�Ck
n−1∑
i=0

‖u1id −u2id ‖20+Ck3n
n∑

i=1
|v1id −v2id |21 (A24)

By discrete Gronwall inequality, we obtain

n∑
i=1

‖	1/2(u1id −u2id )−k��(u1id −u2id )+kv1id ·∇(u1id −u2id )+k∇(p1id − p2id )‖20,h

+‖u1nd −u2nd ‖20+k�
n∑

i=1
|u1id −u2id |21�Ck3n

n∑
i=1

|v1id −v2id |21 exp(Cnk) (A25)

Since nk�tN , we obtain
n∑

i=1
‖	1/2(u1id −u2id )−k��(u1id −u2id )+kv1id ·∇(u1id −u2id )+k∇(p1id − p2id )‖20,h

+‖u1nd −u2nd ‖20+k�
n∑

i=1
|u1id −u2id |21�Ck2

n∑
i=1

|v1id −v2id |21 (A26)

Thus, (A14) and (A26) show that the map G : BRM → BRM is continuous. By Brouwer’s fixed
point theorem, this implies that G has at least one fixed (ûnd ,T

n
d )=G(ûnd ,T

n
d ) (n=1,2, . . . ,N ),

i.e. Problem (IV) has at least one solution sequence (und , p
n
d ,T

n
d )∈ Xd ×Md ×Wd .

If (u1nd , p1nd ,T 1n
d )∈ Xd ×Md ×Wd and (u21nd , p2nd ,T 2n

d )∈ Xd ×Md ×Wd are two groups of solu-
tions for Problem (V), using the same approach as in (A14) and (A26), we derive

‖T 1n
d −T 2n

d ‖20+k�−1
0

n∑
i=1

|T 1i
d −T 2i

d |21�Ck
n∑

i=1
|u1id −u2id |21 (A27)

n∑
i=1

‖	1/2(u1id −u2id )−k��(u1id −u2id )+ku1id ·∇(u1id −u2id )+k∇(p1id − p2id )‖20,h

+‖u1nd −u2nd ‖20+k�
n∑

i=1
|u1id −u2id |21�Ckh

n∑
i=1

|u1id −u2id |21 (A28)
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Therefore, there is an h0=�/(2C) such that if h�h0, we obtain

n∑
i=1

‖	1/2(u1id −u2id )−k��(u1id −u2id )+ku1id ·∇(u1id −u2id )+k∇(p1id − p2id )‖20,h

+‖u1nd −u2nd ‖20+k�
n∑

i=1
|u1id −u2id |21�0 (A29)

which shows that u1nd =u2nd and p1nd = p2nd . And by (A27) we obtain T 1n
d =T 2n

d . Therefore, the
solutions (und , p

n
d ,T

n
d ) (1�n�N ) for Problem (V) are unique. �

APPENDIX B

The proof of Theorem 4.2 is as follows.
Let ŵd =(wn

d ,r
n
d ), wn

d = Pdunh−und , and rnd =d pnh − pnd . On the one hand, we have

B	(u
n
d ,u

n
d , ŵd , ŵd)=‖wn

d‖20+k�|wn
d |21+‖	1/2(wn

d −k��wn
d +kund∇wn

d +k∇rnd )‖20,h (B1)

On the other hand, if write P̂d û=(Pdunh,
d pnh) and ûd =(und , p

d
h ), we have

B	(u
n
d ,u

n
d , ŵd , ŵd) = B	(u

n
d ,u

n
d , P̂

d û, ŵd)−B	(u
n
d ,u

n
d , ûd , ŵd)

= B	(u
n
d ,u

n
d , P̂

d û, ŵd)−B	(u
n
h,u

n
d , û

n
h, ŵd)+(un−1

h −un−1
d ,wn

d)

+ ∑
K∈	h

	K (un−1
h −un−1

d +k j (T n
h −T n

d ),wn
d −k��wn

d +kund∇wn
d +k∇rnd )K

+k j (T n
h −T n

d ,wn
d)

≡ S̄1+ S̄2+ S̄3+ S̄4 (B2)

where, since a(Pdunh−unh,w
n
d)=0,

S̄1=(Pdunh−unh,w
n
d)−kb(d pnh − pnh ,w

n
d)

S̄2=k[a1(und , Pdunh,w
n
d)−a1(unh,u

n
h,w

n
d)+b(rnd , Pdunh−unh)]

S̄3 = ∑
K∈	h

	K (Pdunh−unh−k��(Pdunh−unh)+kund∇Pdunh−kunh∇unh

+k∇(d pnh − pnh),w
n
d −k��wn

d +kund∇wn
d +k∇rnd )K

S̄4 = (un−1
h −un−1

d ,wn
d)+k j (T n

h −T n
d ,wn

d)+
∑

K∈	h

	K (un−1
h −un−1

d

+k j (T n
h −T n

d ),wn
d −k��wn

d +kund∇wn
d +k∇rnd )K
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Using the inverse inequality, Hölder inequality, (8), and Cauchy inequality and noting that h=O(k),
we obtain

|S̄1| = |(Pdunh−unh,w
n
d)−kb(d pnh − pnh ,w

n
d)|

�Ck(|Pdunh−unh |21+‖d pnh − pnh‖20)+ �̃k�|wn
d |21 (B3)

|S̄2| = k|a1(und , Pdunh,w
n
d)−a1(unh,u

n
h,w

n
d)+b(rnd , Pdunh−unh)|

= k

∣∣∣∣∣a1(und , Pdunh−unh,w
n
d)−a1(wn

d ,u
n
h,w

n
d)+a1(P

dunh−unh,u
n
d ,w

n
d)

− ∑
K∈	h

(wn
d −k��wn

d +kund ·wn
d +∇rnd , Pdunh−unh)K

+ ∑
K∈	h

(wn
d −k��wn

d +kund ·wn
d , P

dunh−unh)K

∣∣∣∣∣
� �̃(k�|wn

d |21+‖	1/2(wn
d −k��wn

d +kund ·wn
d +k∇rnd )‖20,h)

+Ck|Pdunh−unh |21+Ckh|wn
d |21 (B4)

|S̄3| = ∑
K∈	h

	K (Pdunh−unh−k��(Pdunh−unh)+kund∇(Pdunh−unh)−kwn
d∇unh

+k(Pdunh−unh)∇unh+k∇(d pnh − pnh),w
n
d −k��wn

d +kund∇wn
d +k∇rnd )K

�Ck(|Pdunh−unh |21+‖d pnh − pnh‖20)+Ckh|wn
d |21

+�̃‖	1/2(wn
d −k��wn

d +kund∇wn
d +k∇rnd )‖20,h (B5)

|S̄4| �Ck|Pdun−1
h −un−1

h |21+ 1
2 (‖wn−1

d ‖20+‖wn
d‖20)+Ck‖wn−1

d ‖20
+�̃‖	1/2(wn

d −k��wn
d +kund∇wn

d +k∇rnd )‖20,h
+�̃k�|wn

d |1+Ck3‖T n
h −T n

d ‖20 (B6)

where �̃ is a constant, which can be chosen arbitrarily. Combining (B1) and (B2)–(B6) could yield

‖wn
d‖20+k�|wn

d |21+‖	1/2(wn
d −k��wn

d +kund∇wn
d +k∇rnd )‖20,h

�Ck(|Pdunh−unh |21+‖d pnh − pnh‖20+|Pdun−1
h −un−1

h |21)
+3�̃k(�|wn

d |21+‖	1/2(wn
d −k��wn

d +kund∇wn
d +k∇rnd )‖20,h)

+Ckh|wn
d |21+ 1

2 (‖wn−1
d ‖20+‖wn

d‖20)+Ck‖wn−1
d ‖20+Ck3‖T n

h −T n
d ‖20 (B7)
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Taking �̃� 1
6 , from (B7) we obtain

‖wn
d‖20+k�|wn

d |21+‖	1/2(wn
d −k��wn

d +kund∇wn
d +k∇rnd )‖20,h

�Ck(|Pdunh−unh |21+‖d pnh − pnh‖20+|Pdun−1
h −un−1

h |21)
+Ckh|wn

d |21+‖wn−1
d ‖20+Ck‖wn−1

d ‖20+Ck3‖T n
h −T n

d ‖20 (B8)

If h is sufficiently small such that Ch��/2, we could obtain from the above inequality that

2‖wn
d‖20+k�|wn

d |21+2‖	1/2(wn
d −k��wn

d +kund∇wn
d +k∇rnd )‖20,h

�Ck(|Pdunh−unh |21+‖d pnh − pnh‖20+|Pdun−1
h −un−1

h |21)
+2‖wn−1

d ‖20+Ck‖wn−1
d ‖20+Ck3‖T n

h −T n
d ‖20 (B9)

Let �nd =�dT n
h −T n

d . By (7), (A10), (A11), and inverse inequality, we could get that

‖�nd‖20+k�−1
0 |�nd |21 = (�dT n

h −T n
h ,�nd)+(�n−1

d ,�nd)−ka2(unh−und ,T
n
h ,�nd)

+ka2(und ,�
dT n

h −T n
h ,�nd)+(T n−1

h −�dT n−1
h ,�nd)

�
k�−1

0

2
|�nd |21+ 1

2
‖�nd‖20+ 1

2
‖�n−1

d ‖20+Ck|unh−und |21
+Ck‖T n−1

h −�dT n−1
h ‖20+Ck|T n

h −�dT n
h |21 (B10)

Therefore, we have

‖�nd‖20+k�−1
0 |�nd |21 � ‖�n−1

d ‖20+Ck‖T n−1
h −�dT n−1

h ‖20
+Ck|T n

h −�dT n
h |21+Ck|unh−und |21 (B11)

First, we consider the case of n∈{n1,n2, . . . ,nL}. Summing (B11) from n=n1 to ni ∈{n1,n2, . . . ,
nL} and using Lemma 3.2 could yield

‖�nid ‖20+k�−1
0

ni∑
j=n1

|� j
d |21�Ck

ni∑
j=n1

|u j
h−u j

d |21+CkL
l∑

j=d+1
� j (B12)

Thus, if k=O(L−2),

‖T ni −T ni
d ‖20+k�−1

0

ni∑
j=n1

|T j −T j
d |21�Ck

ni∑
j=n1

|u j
h−u j

d |21+Ck1/2
l∑

j=d+1
� j (B13)

Summing (B9) from n1 to ni ∈{n1,n2, . . . ,nL} and using Lemma 3.2 yield

‖wni
d ‖20+k�

ni∑
j=n1

|w j
d |21+

ni∑
j=n1

‖	1/2(w j
d −k��w j

d +ku j
d∇w j

d +k∇r j
d )‖20,h

�CkL
l∑

j=d+1
� j +Ck

ni−1∑
j=n0

‖w j
d‖20+Ck3

ni∑
j=n1

‖T j −T j
d ‖20 (B14)
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By using the discrete Gronwall inequality, we obtain

‖wni
d ‖20+k�

ni∑
j=n1

|w j
d |21+

ni∑
j=n1

‖	1/2(w j
d −k��w j

d +ku j
d∇w j

d +k∇r j
d )‖20,h

�Ck

[
L

l∑
j=d+1

� j +k2
ni∑

j=n1

‖T j −T j
d ‖20

]
exp(Cki) (B15)

If h and k are sufficiently small, k=O(L−2), by using inverse inequality and noting that ik�kN�T ,
we obtain

‖wni
d ‖0+(k�)1/2

ni∑
j=n1

|w j
d |1+k1/2

ni∑
j=n1

‖r j
d ‖0

�C

(
k1/2

l∑
j=d+1

� j

)1/2

+C

[
k3

ni∑
j=n1

‖T j −T j
d ‖20

]1/2
(B16)

Using Lemma 3.2 and (B13) yields

‖unih −unid ‖0+(k�)1/2
ni∑

j=n1

|u j
h−u j

d |1+k1/2
n∑

j=n1

‖p j
h − p j

d‖0

�C

(
k1/2

l∑
j=d+1

� j

)1/2

+Ck3/2
ni∑

j=n1

|u j
h−u j

d |1 (B17)

If k is sufficiently small, for example, Ck�(�)1/2/2, by (B17) we obtain

‖unih −unid ‖0+(k�)1/2
ni∑

j=n1

|u j
h−u j

d |1+k1/2
ni∑

j=n1

‖p j
h − p j

d‖0�C

(
k1/2

l∑
j=d+1

� j

)1/2

(B18)

Combining (B18) and (B13) can yield (28).
Next, we consider the case of n /∈{n1,n2, . . . ,nL}. If n /∈{n1,n2, . . . ,nL}; we may as well suppose

that tn ∈(tni , tni+1). Expanding unh , p
n
h , and T n

h into Taylor series with respect to tni could yield

unh = unih −�k
�uh(�1)

�t
, �1∈[ti , tn]

pnh = pnih −�k
�ph(�2)

�t
, �2∈[ti , tn] (B19)

T n
h = T ni

h −�k
�Th(�3)

�t
, �3∈[ti , tn]

where � is the step number from tni to tn . If snapshots are equably taken, then ��N/L . Summing
(B11) and (B9) from n1 to ni , n, and using (B19), if |�uh(�1)/�t |, |�ph(�2)/�t |, and |�Th(�3)/�t |
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are bounded, by discrete Gronwall inequality and Lemma 3.2, we obtain

‖�nd‖20+k�−1
0

[
|�nd |21+

ni∑
j=n1

|�id |21
]

�Ck
ni∑

j=n1

|u j
h−u j

d |21+CkL
l∑

j=d+1
� j +Ck3N 2/L2 (B20)

‖wn
d‖20+k�

[
|wn

d |21+
ni∑

j=n1

|w j
d |21
]

+k

[
‖rnd ‖20

ni∑
j=n1

‖r j
d ‖20

]

�CkL
l∑

j=d+1
� j +Ck3N 2/L2+Ck3

L∑
j=n1

‖T j
h −T j

d ‖20 (B21)

If k=O(L−2), then by (B20) and (B21) we obtain

‖�nd‖0+k1/2�−1/2
0

[
|�nd |1+

ni∑
j=n1

|� j
d |1
]

�Ck1/2
[

ni∑
j=n1

|w j
d |21
]1/2

+C

(
k1/2

l∑
j=d+1

� j

)1/2

+Ck (B22)

‖wn
d‖0+(k�)1/2

[
|wn

d |1+
ni∑

j=n1

|w j
d |1
]

+k

[
‖rnd ‖20+

ni∑
j=1

‖r j
d ‖20

]

�C

(
k1/2

l∑
j=d+1

� j

)1/2

+Ck+Ck3/2
[

ni∑
j=n1

‖� j
d‖20

]1/2
(B23)

Combining (B22) and (B23), by Lemma 3.2, we obtain (29). �
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